519 research outputs found

    Computationally efficient algorithms for the two-dimensional Kolmogorov-Smirnov test

    Get PDF
    Goodness-of-fit statistics measure the compatibility of random samples against some theoretical or reference probability distribution function. The classical one-dimensional Kolmogorov-Smirnov test is a non-parametric statistic for comparing two empirical distributions which defines the largest absolute difference between the two cumulative distribution functions as a measure of disagreement. Adapting this test to more than one dimension is a challenge because there are 2^d-1 independent ways of ordering a cumulative distribution function in d dimensions. We discuss Peacock's version of the Kolmogorov-Smirnov test for two-dimensional data sets which computes the differences between cumulative distribution functions in 4n^2 quadrants. We also examine Fasano and Franceschini's variation of Peacock's test, Cooke's algorithm for Peacock's test, and ROOT's version of the two-dimensional Kolmogorov-Smirnov test. We establish a lower-bound limit on the work for computing Peacock's test of Omega(n^2.lg(n)), introducing optimal algorithms for both this and Fasano and Franceschini's test, and show that Cooke's algorithm is not a faithful implementation of Peacock's test. We also discuss and evaluate parallel algorithms for Peacock's test

    The performance of thin NaI(Tl) scintillator plate for dark matter search

    Full text link
    A thin (0.05cm) and wide area (5cmX5cm) NaI(Tl) scintillator was developed. The performance of the thin NaI(Tl) plate, energy resolution, single photoelectron energy and position sensitivity were tested. An excellent energy resolution of 20% (FWHM) at 60keV was obtained. The single photoelectron energy was calculated to be approximately 0.42 0.02keV. Position information in the 5cmx5cm area of the detector was also obtained by analyzing the ratio of the number of photons collected at opposite ends of the detector. The position resolution was obtained to be 1cm (FWHM) in the 5cmx5cm area.Comment: 10 pages. Accepted to Journal of Physical Society of Japa

    Design paper: A phase II study of Bevacizumab and Erlotinib in patients with non-Squamous non-small cell lung cancer that is refractory or relapsed after 1-2 previous Treatment (BEST)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combination of erlotinib and bevacizumab is a promising regimen in advanced non-squamous non-small-cell lung cancer (NSCLC). We are conducting a single arm phase II trial which aims to evaluate the efficacy and safety of this regime as a second- or third-line chemotherapy.</p> <p>Methods</p> <p>Key eligibility criteria were histologically or cytologically confirmed non-squamous NSCLC, stage III/IV or recurrent NSCLC not indicated radical chemoradiation, prior one or two regimen of chemotherapy, age 20 years or more, and performance status of two or less. The primary endpoint is objective response rate. The secondary endpoints include overall survival, progression-free survival, disease control rate and incidence of adverse events. This trial plans to accrue 80 patients based on a two-stage design employing a binomial distribution with an alternative hypothesis response rate of 35% and a null hypothesis threshold response rate of 20%. A subset analysis according to EGFR mutation status is planned.</p> <p>Discussion</p> <p>We have presented the design of a single arm phase II trial to evaluate the efficacy and safety of combination of bevacizumab and erlotinib in advanced non-squamous NSCLC patients. In particular we are interested in determining the merit of further development of this regimen and whether prospective patient selection using EGFR gene is necessary in future trials.</p> <p>Trial registration</p> <p>This trial was registered at the UMIN Clinical Trials Registry as UMIN000004255 (<url>http://www.umin.ac.jp/ctr/index.htm</url>).</p

    Solubility, Light Output and Energy Resolution Studies of Molybdenum-Loaded Liquid Scintillators

    Get PDF
    The search for neutrinoless double-beta decay is an important part of the global neutrino physics program. One double-beta decay isotope currently under investigation is 100Mo. In this article, we discuss the results of a feasibility study investigating the use of molybdenum-loaded liquid scintillator. A large, molybdenum-loaded liquid scintillator detector is one potential design for a low-background, internal-source neutrinoless double-beta decay search with 100Mo. The program outlined in this article included the selection of a solute containing molybdenum, a scintillating solvent and the evaluation of the mixture's performance as a radiation detector.Comment: 8 pages, 3 figure

    Existence of orbital polarons in ferromagnetic insulating La1x_{1-x}Srx_xMnO3_{3} (0.11<x<<x<0.14) evidenced by giant phonon softening

    Full text link
    We present an inelastic light scattering study of single crystalline (La1y_{1-y}Pry_y)1x_{1-x}Srx_{x}MnO3_3 (0x0.140\leq x\leq0.14,y=0y=0 and x=1/8x=1/8,0y0.50\leq y\leq0.5). A giant softening up to 20 - 30 cm1^{-1} of the Mn-O breathing mode has been observed only for the ferromagnetic insulating (FMI) samples (0.11x0.140.11\leq x \leq 0.14) upon cooling below the Curie temperature. With increasing Pr-doping the giant softening is gradually suppressed. This is attributed to a coupling of the breathing mode to orbital polarons which are present in the FMI phase.Comment: 4 pages, 5 figure
    corecore